小動物臨床におけるリハビリ入門 第4回

物理療法，リハビリテーションの実践編

 はじめに今回は，「小動物臨応におけるりハビリ入門」の第4回として，電気刺激療法，低出力LASER療法，超音波療法，近赤外線療法，体外衝撃波療法といった物理療法の治療目的とその効果について解説 する。わが国においても，物理療法を行う ための獣医療用の機器が販売されており多くの動物医療施設でこれらの機器が導入されている。医学領域では，多くの研究とエビデンスに基づいてこれらの療法 が適切に選択され適用さているが，獣医療においては経験的な側面から治療が行われていることが多い。したがって，実際に犬や猫へ物理療法を行う者は，それ ぞれの療法の治療意義，適応，適用方法 を十分に把握してから治療に望むべきで ある。
さらに，本稿は連載の最終回でもある ため，第1回から第3回までの集大成として比較的に遭遇する機会の多い症例を示 しながら，リハビリテーションの考え方と実際の治療の流れを紹介する。本稿が明日 からリハビリテーションを実施する上での参考となったら幸いである。

物理療法

物理療法とは，電気，光線，温熱，超音波などのエネルギーを利用して症状を絺和させる療法のことで，主に疼痛の緩和，

神経刺激，筋力の回復，創傷治瘓などの目的で行われることが多い。物理療法は単独で行うのではなく，マッサージ，他動運動，運動療法といった他の療法と併用 することで最大限の効果を発揮する（図1）。動物医療で応用されている物理療法には，温度療法，電気刺激療法（TENS ，NMES EMS ），低出力LASER療法（LLLT），超音波療法，体外㣫撃波療法，近赤外線療法，低周波療法，短波ジアテルミーな どがある。これらの物理療法は，週に数回から毎日の頻度で行い，定期的に症状 を評価して治療の継続の有無を検討する。整形外科疾患や神経疾患の動物では，温度療法や電気刺激療法が特に有効で

ある。損傷または発症3～4日以内は患部 の寒冷療法，それ以降では温熱療法が有効である。電気刺激療法は，疼痛の緩和に有効なTENS と，運動ニューロンを刺激することで筋肉を収縮させるNMES が あり，動物においても効果的である。 LLLT や超音波療法は，炎症の抑制，疼痛の緩和，創傷治癒の促進といった効果 が期待され，実際に関節疾患や脊柱疾患の多くの動物で行われている。最近では獣医療用のこれらの機器も開発および眅売されてお以，多くの物理療法を実施する ことができる。しかし，これらの機器の特性を理解して正しい方法で利用している者は以外に少ないように思われる。したがっ

て，物理療法を行う時には，その位置つ けや，それぞれの療法の適応と効能につ いて十分に理解してから，治療を展開す べきである。

温度療法

温度療法とは，体もしくはその一部を温 めたり冷やしたりして行う物理療法のこと を指し，主に寒冷療法と温熱療法に分け られる。寒冷療法は術後や外傷後の3日以内である急性期に適用されることが多く温熱療法は慢性関節炎や損傷 $3 \sim 5$ 日以降の亜急性期から慢性期に適用される運動前のウォーミングアップには温熱療法運動後のクールダウンには寒冷療法が適用される。

寒冷療法は，氷を体表にあてることによ り容易に行うことができる。この時，涷傷を防ぐためにタオルや布に角水を包んでか ら体表にあてる。市販のコールドパック（図 2）を使用することもできる。コールドパック を使用する時にも，タオルや布で包んでか ら体表にあてることが推奨されている。寒冷療法を行うと，血管の収縮や細胞代謝 の減少による炎症の抑制，疼痛の緩和筋攣縮の減少といった効果が得られる。 しかし，このような方法では，3cm以上の深部まで十分に冷やすことが難しいことも理解しておくべきである。1回につき15 20分で，1日に数回行うのが一般的である。
温熱療法には，ホットパック（図2）や温 めたタオルによる加温，近赤外線療法，温水浴，ジアテルミ一療法，超音波療法とし った療法が行われている。これらの療法は温めたい組織の深さによって使い分ける一般的に，組織深度が 1 cm 以下 までの加

温はホットパック，皮下組織まで温めたい時には温水浴，選択的に筋肉を加温した い時にはジアテルミー療法，深層まで温め たい時には超音波療法が適用される。温熱療法を行うことにより，コラーゲン・筋•腱 の伸張，筋肉のリラックス効果，疼痛の緩和神経機能の改善，血管の拡大，血流の増加といった効果が得られる。1回につき15 ～20分で，1日に2～3回行うのが一般的 である。

図2 コールドパッック・ホットパック

電気刺激療法

電気刺激療法は，獣医療域においても神経疾患や整形外科疾患で効果がある と報告されており，欧米では広く用いられ ている。電気刺激療法は，急性痛または慢性痛の緩和や，麻疩の動物における神経刺激に用いられている。電気刺激を行 うと，内在性エンドルフインが分泌されるこ とにより疼痛緩和効果が得られる。また局所の循環改善や炎症の緩和といった効果も認められる。さらに，筋肉を電気刺激することにより，筋群が緊張と弛緩をし，筋力の増強や持久カ，そして有酸素運動能の改善といった効果も認められる。電気刺激の方法には，神経筋電気刺激 （Neuromuscular electrical stimula
tion：NMES：図3），経皮的電気神経刺激（Transcutaneous electrical nerve stimulation：TENS；図4），電気的筋肉刺激（Electrical muscle stimulation EMS ）の3種頪の方法がある。NMES とは，正常に機能している運動ニューロンを介 して筋肉を収縮させる刺激方法で，多く の整形外科疾患および神経疾患で行うこ とができる。TENS とは，主に疼痛緩和の ために行われている電気刺激法で，関節痛や背部痛の治療で用いられている。 TENS には，痛みのある部位に電極を設置して行う局所刺激法と，脊髄分節に沿 って脊柱周囲に電極を設置して行う脊髄分節的刺激法に大別される。例えば，膝関節炎の時には膝関節へ直接電極を設置して刺激することができるが，治療した

爻3 神経箷電気刺激

い部位に金属性インプラント が存在する時には春髄分節的刺激法にて治療を行う。 EMS は，筋線維を直接刺激して筋肉を収縮させる電気刺激法で，筋力増強や肥満の改善を目的に行われている。
神経疾患や整形外科疾患の動物にお いて疼痛のコントロールを行う時には， TENS を用いて治療する機会が多い。犬 の整形外科疾患においては，術後，前十字靱帯断裂，骨関節炎，股関節形成不全，时関節形成不全などで有効性が示され ている。急性痛では $80 \sim 150 \mathrm{~Hz}$ ，慢性痛 では0～10Hz の周波数が有効であると報告されている。禁忌は，金属性インプラント装着部位，皮膚の感染，炎症，発作歴，腫傷，心ペースメーカーの装着されている動物である。一定した見解は無いが，1回 につき約15分で，週に3～5回行う方法が推奨されている。

低出力LASER療法（LLLT）
$100 \mathrm{mW以下}$ の周波数のLASER（レ ーザー）を用いた光線療法を，低出力 LASER療法（LLLT）という（図5）。獣医療においても骨関節疾患や脊柱疾患 で一定の効果があると報告されており，わ が国においても広く用いられている。骨関節炎，前十字勒帯断裂，上腕二頭筋腱炎，椎間板ヘルニ入 図6）といった症例にお いて，疼痛緩和を目的として適用されるこ とが多い。レーザーには，創傷治癒促進効果もある。

レーザーの生体内での作用機序は極 めて複雑である。レーザー光のほとんどは ミトコンドリアで吸収され，ATP の産生を増加させ，最終的にDNAを刺激して細胞代謝の活性化や蛋白質合成を促進さ

せる。これにより，貣食細胞の活性化，血流やノンパ流の改善，代謝改善などの抗炎症効果が認められる。また，内在性工 ンドルフィンの放出を刺激することで，疼痛緩和効果を得ることができる。
レーザー療法を行うときには，現在病院 で所有している機種の波長を把握しておく必要がある。ヘリウムネオン HeNe）レー ザーの波長は約 630 nm で， $1 \sim 4 \mathrm{~J} / \mathrm{cm}^{2}$ で は0．5～2．0cmの深さまでしか直接効果が得られない。半導体 GaAs，GaAl As レーザーの波長は約800～980nm で， HeNe レーザーよりも深部まで到達する。半導体レーザーの直接効果は深さ 2.0 cm ，間接効果では深さ 5.0 cm 末で認められた という報告がある。治療を行う者は，直接

効果の得られる深部到達度を理解して治療すべきである
LLLT を行うときには，罹患部位の周囲 で照射するのが一般的である。犬におし ても，HeNe レーザーやGaAl As レーザー で治療した群は，何も治療を行わない群 と比較して有意に疼痛緩和効果を示した という報告がある。しかし，HeNe群とGa－ AI As群との間には有意な差は見出され ていない。一方で，疾患ごとまたは部位ご との照射条件が末だ確定していないため，施設ごとに照射条件が異なるという問題点がある。今後，これらの詳細な検討が獣医療域においても行われることを期待 したい。

超音波療法

超音波療法はより深い部位を温めるた めに行われている温熱療法で，欧米では広く用いられている。骨関節疾患では，慢性腱炎，上腕二頭筋腱炎，骨関節炎，骨折，関節可動域 ROM）制限，前十字勒帯断裂の動物で広く用いられている。治療 には，周波数，照射強度，使用率が影響 するので，治療を行う者はこれらのことを理解しておく必要がある。周波数は 1Mも と3MŁの2種類があるのが主流で表層を加温したい時には3M－z ，より深部 を加温したい時には1MHz に設定して治療を行う。照射強度 出力）は，組織温に影響する。照射強度 出力）は，一般的に 0． $5 \sim 2 W / c m$ 2に設定されることが多い。照射強度 出力）が高いほど，温度の上昇が高くかつ早い。使用率は，通常5～ 50% に設定する。超音波療法を行うとき には，短毛の動物であっても毛を刈る必要がある。また，治療を行う時には超音波

ゲルを十分に塗布して，トランスデューサ一と皮膚を密着させないと，十分な治療効果が得られないので注意が必要である。骨の隆起部，金属性インプラント装着部位，成長板，心贓，妊娠子宮，精巣には，直接照射しないように注意する。連続波 CW） とパルス波 PW）の2種類の超音波が，主に治療に用いられている。連続波 CW） は，加温効果が高い。パルス波 PW）には， マイクロマッサージという物理的な効果も期待することができる。最近では，低出力 パルス超音波治療器 LIPUS）が，骨折癒合促進の目的で使用されている 図7）。

近赤外線療法

近赤外線療法とは，光エネルギーを用 いた温熱療法であり，わが国においても動物用の治療機器 アルファビームALB－ PZ1：ミサ医科学株式会社（ 図8）」が販売されており，実際の治療に使用する ことができる。動物に近赤外線を照射す ると，深部組織の加温，血流増加による酸素と栄養の供給増加や老廃物の除去，神経の活動を抑制することによる疼痛の緩和といった効果が期待できる。レーザー
 いときに有効である。犬や猫における近赤外線療法の適応は，椎間板ヘルニアや骨関節炎の症例における疼痛緩和，外傷，創傷，術傷，ロ内炎，歯肉炎の治癒促進 である。治療条件の検討をされているが，亜急性期で15～20分間，慢性期で20～ 30分間の照射が有効であったという報告 がある。近赤外線療法は，急性炎症や化膿性疾患では禁忌である。

体外㣫撃波療法

体外衝撃波療法之は，体外から衝撃波 エネルギーを与えて，疼痛緩和と創傷の治癒促進効果を得る治療である 図9）。衝撃波エネルギーは，生体内でサブスタ ンスPの放出を促進することで疼痛を緩和し，オステオカルシンを放出により骨棘 が抑制されると報告されている。また，腱 の再構成の促進にも影響している。わが国においても，動物医療用の体外㣫撃波治療装置が農林水産省の認可を得ており，

現在では主に競走馬で用いられている。治療に用いる衝撃波はかなり強いため，犬で治療を行うときには，鎮静もしくは全身麻酔が必要である。海外では，犬にお いても多くの治療が行われており，骨関節炎，股関節形成不全，上腕二頭筋腱炎，椎間板ヘルニア，変形性春椎症で有効性が示されている。
 の澥好意により䍖載

神経疾患と整形外科疾患における
リハビリテーションの実践編

1．椎間板ヘルニアの術後の リハビリテーション

椎間板ヘルニアは犬で最も多い神経疾患であり，症例の重症度によっては外科手術が選択される。一般的に，手術の適応となる症例は重度の麻痺であること が多く，リハビリテーションの主な目的は起立および歩行機能の回復である。その目的を達成するためには，術後の早期から適碓なりハビリテーションを行う必要がある椎間板ヘルニアの症例で手術を行つ た動物においては，もはや圧迫物質が春柱管内に存在していないため，術創さえ癒えれば比較的に積極的なりハビリテー

ションを展開することができる。すなわち ヶージレストのみを強いるのではなく，術創の治癒を悪化させないように保護しな がら行えば，術後早期からのリハビリテー ションが実施可能である。近年，深部痛覚を消失した症例であっても，約 60% 以上の症例において歩行が可能となること が報告されている。この成績の向上は，リ ハビリテーションの発展の成果と言っても過言ではなく，その重要性は認識されて いる。しかし，麻痺が重度な動物では，起立および歩行機能が回復するまでに長し期間を要するので，長期的な視野に立つ た目標設定が必要となる。ここでは，いす れの施設においても行うことのできる方法 を紹介する。

手術直後のリハビリテーション
手術の当日から3日以内までは，脊柱に負担の大きいリハビリテーションは控えた方が賢明である。術創の疼痛管理の目的で鎮痛剤を投与し，必要であれば手術部位の周囲を15分程度冷却する。廃用性筋萎縮の予防またはその速度を緩徐 にするために，麻㾝肢のマッサージを行う （図10）。関節が拘縮しないように，屈伸運動（図11）または自転車漕ぎ運動を行う完全麻㾝の症例では，引つ込め反射を誘発させることで，神経と筋肉の連動性を高めることができる（図12）。これらのリハ

図10

図11 麻庫肢の屈伸運動

図12 麻㾝肢 の引っっ这め反射の誘発

ビリテーションは横卧位で行うか，手で体重を支えて起立させるなどして，全ての時間を脊柱に負担のかからないようにして行うのが望ましい。リハビリテーションの頻度は1日に2～3回で，残りの時間はケージ レストによる運動制限を行う。

自力起立を促すリハビリテーション術後2～3日以上経過したら，補助起立 を開始して起立能力の回復に努める。術創の疼痛管理が必要であれば，手術部位周囲の温熱療法やTENS を適用する。麻疩肢の筋萎縮を改善する目的でマッサ ージを行う（図10）。麻痺肢の関節可動域（ROM）の維持および改善の目的で，屈伸運動（図11）や他動的関節可動域訓練（PROM）も継続して行う。神経機能の回復を目的として，引っ込め反射の誘発も継続的に行う（図12）。起立位を憶えさせるため，または起立能力を回復さ せる目的で，補助起立による起立訓練を1

回に5分程度から開始する（図13）。起立訓練を行う時には，手で十分に体重を支え可能であれば麻㾝肢に体重がかかるよう に補助するカを緩めて自力での起立を試 みる。約1分以上の自力起立が可能とな るまでは歩行訓練を控えた方が良い。自 カで起立できない時期から無理矢理に歩行訓練を開始すると，健常肢のみで歩行 することを覚えてしまい麻疩肢での歩行 を促すことができないため，早すぎる歩行訓練は推奨しない。これらのリハビリテー ションは，1日に2～3回の頻度で行う。

図13 起立訓練（補助起立•强制起立）

歩行能力を回復させるための リハビリテーション
自力での起立が比較的に長い時間で きるようになったら，能力に応じて歩行訓練を開始する。麻㾝肢のマッサージ（図10） やPROM を行ってから歩行訓練を行うと より効果的である。この時期からは， NMES（図3），LLLT（図6），超音波療法などの物理療法を適用することが可能 である。歩行訓練は，手やタオルで体重を支えながら一歩ずつ確実に行う（図14）。長い距離の補助歩行が可能となったら， スリング（吊り帯）を用いて歩行訓練を行い できる限り長い時間を自力で歩行させる。 スリングでの長時間の歩行訓練は，治療 を行う者にとって負担となることが多い。長時間の歩行訓練を行うために，補助歩

行用車椅子を用いたカートセラピーを適用すると効果的である（図15）。水中トレ ッドミルなどを用いたハイドロセラピーは，浮力により脊柱への負担が軽微な状呮下で補助歩行を行うことができるので，歩行のパターン化を達成するのに有効であ る（図16）。このような補助を必要とせずに，自力での歩行が可能となったら，1日に2～ 3 回の短時間の散歩を開始する。

⿴囗 14 補助歩行：タオルウォーキンク

協調性のある歩行を獲得するため のリハビリテーション
長時間の歩行を行うことが可能となつ ても，ナックリングや肢を引きずるといった障害が残存することがある。このような状態を完全に改善させるために，ダンシング座り立ち運動，スイスボール運動（図17） バランスボード運動といったリハビリテー ションが効果的である。機能回復期には， トレツドミル（図16），ハイドロセラピー，ジグ ザグ歩行，円周歩行，カバレッティーレール， ジョギングといった自発的な運動療法を取 り入れて完全回復を目指す。切り返しを

䍙16水中トレッドミルを用いたハイドロセラピー

伴う運動や，段差およびジャンプは，椎間板ヘルニアの再発防止という観点からも避けるべきである。これらの運動療法は急がずに，適度にかつ計画的に行うこと が重要である。

2．大腿骨頭切除術後の リハビリテーション

大腿骨頭壊死症，股関節形成不全外傷性股関節脱臼といった疾患の治療法として，大腿骨頭切除術が選択される ことがある。大腿骨頭切除術を行った動物では，術後の再脱臼や再骨折といった合併症が生じないために，比較的に早期 から積極的なりハビリテーションを展開す ることが推奨されている。患肢の不使用 や拘縮を防ぐためにも，術後のなるべく早期からの適確なリハビリテーションが必須 である。術創の癒合を悪化させないように気を配りながら，手術直後から着肢訓練 および起立訓練を積極的に開始し，廃用

性筋萎縮の程度を最小限にすることが最初の目標となる。これらのリハビリテー ションを行う時には，疼痛が妨げとなること があるので，厳格なペインコントロールを行うことも重要である。十分な負重をかけ た着肢や起立が可能となったら歩行訓練 を開始する。この時期には，一般的に强度の高い運動療法を安全に行うことできる。 ここでは，いずれの施設においても行う とのできる方法を中心に紹介する。

着肢および起立を目的とした リハビリテーション
大腿骨頭切除術後は，廃用性筋萎絔 と拘縮を予防または最小限にするために手術直後から積極的に着肢および起立訓練を開始する。非ステロイド性抗炎症薬（NSAIDs）を投与して疼痛の緩和を試みることにより，これらの訓練を早期か ら確実に実施することができる。TENS や寒冷療法も，この時期の疼痛緩和や術後 の腫脹を抑制するのに有効である。着肢 および起立訓練を行う前に，マッサージや屈伸運動を行うとより効果的である（図18）股関節の線維性関節包の形成を障害し ないように，手術直後には股関節領域の屈伸運動やストレッチを避けるべきであ る。

最初は手で体重を支えて，患肢に過剰 な負荷がかからないように注意しながら

図18 患忮の屈伸運動

着肢訓練を行う。踏み直り反応（図19）や姿勢性伸筋突進反応（図20）といった姿勢反応を利用することにより，動物が苦な く容易に着肢訓練を行うことができる。こ れらの着肢訓練は，手術翌日から行うこと を推棌する。

着肢時に少しずつ負重がかけられる様になってきたら，徐々に負荷を増やして いき自力での起立を試みる。可能であれば，健常肢を挙げて患肢のみで起立させるな ど，より自発的な着肢および負重訓練を行 う（図21）。このようなりハビリテーションを 1日2～3回行うことで，ほとんどの症例が手術4～14日後までには着肢が可能となる。

図20 姿業性伸筋资進反応を用いた着胶訓練

踄行能力の回復と筋力強化のため のリハビリテーション

着肢が常時可能となったら，歩行訓練 を開始する。NSAIDs の投与を継続する ことで，歩行訓練を円滑に行うことができる。歩行訓練を行う前に，患肢の温熱療法を 10 分ほど行うと良い。まず，患肢のマッサ ージから行い，疼痛が生じない範囲内て股関節の屈伸運動やPROM を行う。続 いて，引き紐で後肢に十分な体重をかけ ながら，短時間のゆっくりとした散歩を行う。最初は，5分程度から開始し，1週間に5分位のペースで距離を伸ばしていく。術後週間以上が経過したら，股関節のストレッ チや座り立ち運動を行い，股関節の ROM の改善を図る。患肢への体重負重 が十分に行うことが可能で，跛行がほとん ど認められなくなったら，NSAIDs の投薬 を中止する。機能回復期には，制限下で あれば，ジグザグ歩行，円周歩行，カバレ ッティーレール，ジョギングといった，ほとん どの自発的な運動療法を安全に行うこ ができる。水中トレッドミルや自由遊泳など のハイドロセラピーは，大腿骨頭切除術後 のリハビリテーションに特に有効である。 これらの運動療法の最後には，寒冷療法 を行ってクールダウンをする。この時期には，超音波療法，電気刺激療法（TENS NMES）LLLT といった物理瘃法の併用も効果的である。平均的に手術1ヵ月後 までには，ほほぼ正常な肢の運びと体重負重， そして速歩を行うことができる
さいごに
動物医療におけるりハビリテーションの最近の考え方について4回に渡り述べた。近年では，わが国においても多くの施設 でリハビリテーションが導入され始めており，急速に普及しつつある。また，一部の施

設では，欧米の動物理学療法士の認定 を受けた者が治療を行ってお以，世界基準のリハビリテーションが展開され始めて いる。リハビリテーションは，整形外科疾患や神経疾患の動物が機能回復する上 で大変重要であることに疑いはない。し かし，リハビリテーションはあくまでも適切 な内科療法や外科手術を行った上での補助療法であることも常に頭に入れて治療を行うベきである。また，リハビリテーシ ヨンを行う者は，それぞれの療法の目的，正しい方法，効果，強度を理解し，科学的根拠に基づいて行うことが機能回復にと ってきわめて重要である。これは，治療に よる二次的損傷や合併症を防ぐということ にも役立つ。リハビリテーションを行う際に は，医療スタッフ間の情報共有と家族へ の教育も重要な位置を占める。これらの点を十分に考慮して，リハビリテーションを展開していくことが理想的である。本連載が，犬や猫のリハビリテーションを行う時の参考となったら幸いである。

－参考文献

1．Millis，D．，Levine，D．，Taylor，R．ed．Canin rehabilitation and Physical Therapy．W Saunders Co．Philadel phia．U．S．A．2004．
Bockstahler．B．Levine，D．Mill is sential Facts of Physiotherapy in dogs． and cats．－Rehabilitation and Pain Man－ agement－．BE Vet Verlag．Babenhausen． Germany． 2004.
3．Gross，D．M．Canine Physical therapy．Or－ thopedic physical therapy．Wizard of Pow，East Lyme．U．S．A． 2002.
4．Fossum，T．W．ed．Small Animal Surgery．
K．ed．Mosby．Phi ade lphia．U．S．A． 2007 and cats with spinal diseases．Jpn．J．Vet Aneth．Surg．37（3）：49－60． 2007.
6．枝村一弥．小動物のリハビリテーションの現状と将来－科学的根﨏に基づいたりハ ビリの実際，獸医畜産新報，
61（10）：807－814． 2008.
．枝村一弥．リハビリテーションの基本と考
 ク．石田卓夫臨修 チクサン出版，東京． 2009

